数字电源协议

V2.4

2020.01.17

历史版本修改说明

日期	版本	说明
2016.08.27	2.0	定稿
2017.04.08	2.1	1、软件触发模式也会保存
		2、增加软触发命令
2017.04.11	2.2	1、当工作模式不为软触发但收到软触发命令时,返回错误码 04
2019.05.17	2.3	1.增减联动控制方式(联动一、联动四)2.增加按键调整亮度
2020.01.15	2.4	1.增加单项控制命令(命令7,命令8,命令9,命令10)
		2.协议修改,使得看起来更明了
	- 1	

一、 通讯协议

RS485 或者串口,波特率 115200bps,数据位 8,停止位 1,校验位 none,流控制 none。

上位机和设备通过 RS485 通信或者网络通讯,更改设备的通道配置、标定亮度等等。约定通信协议如下:

1. 符号集

采用 ASCII 码, '\$','0'-'9','A'-'F','*'和回车符。以\$作为命令的开始,回车作为命令的结束,中间命令体用 0-9, A-F, 16 个字符,'*' 后面为校验和。

二、 校验和算法

校验和算法: \$和*之间所有字符做异或(不包括\$和*),得到一个8位的数据,再转换成两个字符。例如:

序号	0	1-2	3-4	5	6-7	8-9	10-13	14-17	18-19	20	21-22	23-24
ASCII 码	\$	00	55	Α	AA	55	0000	1234	55	*	45	回车
说明	HEADER	CMD	配置参数								校验值	回车键(对应十六进制 0D0A)

```
unsigned char a[19] = {'0','0','5','5','A','A','A','5','5','0','0','0','0','1','2','3','4','5','5'};
unsigned char aa=0;
int main(intargc, char* argv[])
{
    inti;
    for(i=0;i<19;i++)
    {
        aa^=a[i];
    }
    printf("%02X\n",aa);
    return 0;
}
结果: 45
```

三、 通信协议

1、通道配置。

1.1 上位机通过此命令更改设备的配置,设备接到命令后检查校验值,更改当前配置,并将配置信息写入 EEPROM。 共有四个通道,每个通道单独配置。命令格式如下:

序号	0	1-2	3-4	5	6-7	8-9	10-13	14-17	18-21	22-25	26-29	30	31-32	33-34
ASCII	\$	00	XX	Х	XX	XX	XXXX	xxxx	XXXX	xxxx	XXXX	*	XX	回车
码	_ <													
说明	HEADER	CMD	通	通道	工作	超	亮度	发 光	发 光	闪烁	触发输	*	校 验	回车键(对应十
			道	开关	模式	电		时间	延时	次数	出延时		值	六进制 0D0A)
						流								

通道: XX = 01 ----一通道 XX = 02 ----二通道 XX = 03 ----三通道 XX = 04 ----四通道

配置项如下:

1) 通道开关: X = A----通道使能 X = 5----通道不输出

2) 工作模式: XX = 5A----连续工作模式,超电流时强制为上升沿触发

XX = 55----连续工作模式,超电流时强制为下降沿触发

XX = AA----上升沿触发

XX = A5----下降沿触发

XX = A0----低电平触发

XX = AF----高电平触发

XX = AB----软件触发

XX=AC----联动模式 1 (同步输出信号输出到前一个非联动 1 通道)

XX=AE----联动模式 4 (同步输出信号输出到各自对应的通道)

XX=AD--- PWM 上升模式

XX=5D---- PWM 下降模式

在超电流模式下连续工作模式不可选。

3) 超电流: XX = 55----正常电流模式;

XX = AA----超电流模式。

说明:之前亮度控制是指软件控制还是电位器控制,现在的版本去掉电位器的功能,该位置改为控制每个通道的超电流开关

4) 亮度: XXXX 取值范围 0000-00FF

说明: 亮度调节范围由之前的 0000-0064 改为 0000-00FF。

5) 发光时间: XXXX 取值范围 0000-FFFF, 单位: 10 微秒;

边沿触发模式和软触发时有效。

6) 发光延时: XXXX 取值范围 0000-FFFF, 单位: 10 微秒;

边沿触发模式和软触发时有效。软触发模式时,发光延时为灯灭的时间长度。

7) 闪烁次数: XXXX 取值范围 0000-FFFF;

软件触发时有效;

0000 为一直闪烁,直到配置到其它模式或改变闪烁次数。

8) 触发输出延时: XXXX 取值范围 0000-FFFF, 单位: 10 微秒;

所有触发模式有效;

取值必须小于"发光时间"。

9) 例如:以 ASCII 码发送数据: \$0001AAB55006403E803E8000101F4*33(末尾请加回车)

以 HEX 发送数据: 24 30 30 30 31 41 41 42 35 35 30 30 36 34 30 33 45 38 30 33 45 38 30 30 30 31 30 31 46 34 2a 33 33 0D 0A

1.2 设备返回的配置应答信息

序号	0	1-2	3-4	5-6	7	8-9	10-11
ASCII 码	\$	00	XX	XX	*	xx	回车
说明	HEADER	CMD	通道	配置状态	*	校验值	回车键(对应十六进制 0D0A)

1) 通道: XX = 01 ---- 通道

XX = 02 ----二通道

XX = 03 ----三通道

XX = 04 ----四通道

2) 配置状态: XX = 00----配置成功

XX = 01----命令不完整

XX = 02----校验和失败

XX = 03----通道号不对, 大于 4

XX = 04----通道开关不是 5 或 A

XX = 05----工作模式错误

XX = 06----超电流模式配置有误有误

3) 例如:以 ASCII 码获取数据: \$000100*01 (末尾会有回车)

以 HEX 获取数据: 24 30 30 30 31 30 30 2A 30 31 0D 0A

2、读取当前配置。上位机通过此命令读回设备的当前配置。

2.1 上位机发往设备的命令格式

序号	0	1-2	3-4	5	6-7	8-9
ASCII 码	\$	01	XX	*	xx	回车
说明	HEADER	CMD	通道	*	校验值	回车键(对应十六进制 0D0A)

通道: XX = 01 ----一通道

XX = 02 ----二通道

XX = 03 ----三通道

XX = 04 ----四通道

XX = FF ----所有通道

例如: 以 ASCII 码发送数据: \$0101*00 (末尾请加回车)

以 HEX 发送数据: 24 30 31 30 31 2a 30 30 0D 0A

2.2 设备返回的命令格式。若通道 XX=FF,设备将返回 4 条命令,不会将所有配置信息放在一条命令中。

序号	0	1-2	3-4	5	6-7	8-9	10-13	14-17	18-21	22-25	26-29	30	31-32	33-34
ASCII 码	\$	01	XX	Χ	XX	XX	XXXX	xxxx	XXXX	xxxx	XXXX	*	XX	回车
说明	HEA	CMD	通	通道	工作	超电	亮度	发光时	延时	闪烁次	触发输	*	校验值	回车键
	DER		道	开关	模式	流		间		数	出延时			(対应
														十六进
									X	/-				制 0D0A)

其他说明参见"通道配置"(上一个通讯协议)命令。

例如: 以 ASCII 码获取数据: \$0101A5A55006403E803E8000101F4*45(末尾会收到回车)

以 HEX 获取数据: 24 30 31 30 31 41 35 41 35 35 30 30 36 34 30 33 45 38 30 33 45 38 30 30 30 31 30 31 46 34 2A 34 35 0D 0A

3、连接测试命令,此命令用来检测上位机与硬件的连接情况。

3.1 上位机发给设备的命令格式

			, , , , , , ,	•		
序号	0	1-2	3-6	7	8-9	10-11
ASCII 码	\$	02	5555	*	xx	回车
说明	HEADER	CMD	固定值	*	校验值	回车键(对应十六进制 0D0A)

例如:以 ASCII 码发送数据: \$025555*02(末尾请加回车)

以 HEX 发送数据: 24 30 32 35 35 35 35 2A 30 32 0D 0A

3.2 设备返回的命令格式

序号	0	1-2	3-6	7	8-9	10-11
ASCII 码	\$	02	AAAA	*	xx	回车
说明	HEADER	CMD	固定值	*	校验值	回车键(对应十六进制 0D0A)

例如:例如:以 ASCII 码获取数据: \$02AAAA*02(末尾会收到回车)

以 HEX 获取数据: 24 30 32 41 41 41 41 2A 30 32 0D 0A

4 软触发

	B					
序号	0	1-2	3-4	5	6-7	8-9
ASCII 码	\$	03	XX	*	xx	回车
说明	HEADER	CMD	通道	*	校验值	回车键(对应十六进制 0D0A)

CMD = 03

通道: XX = 01 ----一通道

XX = 02 ----二通道

XX = 03 ----三通道

XX = 04 ---- 四通道

XX = FF ----所有通道

例如: 以 ASCII 码发送数据: \$0301*02 (末尾请加回车)

以 HEX 码发送数据: 24 30 33 30 31 2a 30 32 0D 0A

4.2 设备返回的命令格式

序号	0	1-2	3-4	5-6	7	8-9	10-11
ASCII 码	\$	03	XX	XX	*	xx	回车
说明	HEADER	CMD	通道	配置状态	*	校验值	回车键(对应十六进制 ODOA)

通道: XX = 01 ---- 一通道

XX = 02 ----二通道

XX = 03 ----三通道

XX = 04 ----四通道

XX = FF ----所有配置为软触发的通道

配置状态: XX = 00----无错误

XX = 01----命令不完整

XX = 02----校验和失败

XX = 03----通道号不对

XX = 04----当前工作模式不是软触发。当 ch=FF 时,只有所有通道都不是软触发才会返回此错误例如:以 ASCII 码获取数据: \$030100*02(末尾会收到回车)

以 HEX 码获取数据: 24 30 33 30 31 30 30 2A 30 32 0D 0A

5 通道开关

5.1 上位机发给设备的命令格式

	= p = >> - : 1: >	*	, , ,				
序号	0	1-2	3-4	5	6	8-9	9-10
ASCII 码	\$	04	XX	х	*	xx	回车
说明	HEADER	CMD	通道	开关	*	校验值	回车键(对应十六进制 0D0A)

CMD = 04 通道: XX = 01 ---- 通道

XX = 02 ----二通道

XX = 03 ----三通道

XX = 04 ----四通道

XX = FF ----所有通道

开关: X = A----通道使能

X = 5----通道关闭

例如:以 ASCII 码发送数据: \$04015*30(末尾请加回车)

以 HEX 码发送数据: 24 30 34 30 31 35 2a 33 30 0D 0A

5.2 设备返回的命令格式

序号	0	1-2	3-4	5-6	7	8-9	10-11
ASCII 码	\$	04	XX	xx	*	xx	回车
说明	HEADER	CMD	通道	配置状态	*	校验值	回车键(对应十六进制 0D0A)

CMD = 04

通道: XX = 01 ----一通道

XX = 02 ----二通道

XX = 03 ----三通道

XX = 04 ----四通道

XX = FF ---- 所有通道

Err: XX = 00----无错误

XX = 01----命令不完整

XX = 02----校验和失败

XX = 03----通道号不对

例如:以 ASCII 码获取数据: \$040100*05 (末尾会收到回车)

以 HEX 码获取数据: 24 30 34 30 31 30 30 2a 30 35 0D 0A

6 亮度控制

6.1 上位机发给设备的命令格式

序号	0	1-2	3-4	5-6	7	9-10	10-11
ASCII 码	\$	05	XX	XX	*	XX	回车
说明	HEADER	CMD	通道	亮度	*	校验值	回车键(对应十六进制 0D0A)

CMD = 05

通道: XX = 01 ---- 通道

XX = 02 ----二通道

XX = 03 ----三通道

XX = 04 ----四通道

XX = FF ---- 所有通道

亮度: XX 取值范围 0x00-0xFF。

例如:以 ASCII 码发送数据: \$050164*06(末尾请加回车)

以 HEX 码发送数据: 24 30 35 30 31 36 34 2a 30 36 0D 0A

6.2 设备返回的命令格式

序号	0	1-2	3-4	5-6	7	8-9	10-11
ASCII 码	\$	05	XX	XX	*	xx	回车
说明	HEADER	CMD	通道	配置状态	*	校验值	回车键(对应十六进制 0D0A)

通道: XX = 01 ----通道

XX = 02 ----二通道

XX = 03 ----三通道

XX = 04 ----四通道

XX = FF ----所有通道

配置状态: XX = 00----无错误

XX = 01----命令不完整

XX = 02----校验和失败

XX = 03----通道号不对

例如:例如:以 ASCII 码获取数据: \$050100*04(末尾会收到回车)

以 HEX 码获取数据: 24 30 35 30 31 30 30 2A 30 34 0D 0A

7. 设置通道模式

Ī	序号	0	1-2	3-4	5-6	7-10	11	12-13	14-15
- 1				l					

AS	CII 码	\$	20	xx	XX	XXXX	*	xx	回车
说	明	HEADER	CMD	通道号	工作模式	闪烁次数	*	校验值	回车键(对应十六进制 0D0A)

(**1**) 通道: XX = 01 -----通道

XX = 02 ----二通道

XX = 03 ----三通道

XX = 04 ----四通道

XX = FF ----所有通道

(2) 工作模式: XX = 5A----连续工作模式,超电流时强制为上升沿触发

XX = 55----连续工作模式,超电流时强制为下降沿触发

XX = AA----上升沿触发

XX = A5----下降沿触发

XX = A0----低电平触发

XX = AF----高电平触发

XX = AB----软件触发

XX=AC----联动模式 1 (同步输出信号输出大前一个非联动 1 通道)

XX=AE----联动模式 4 (同步输出信号输出到各自对应的通道)

XX=AD--- PWM 上升模式

XX=5D---- PWM 下降模式

在超电流模式下连续工作模式不可选。

(3) 闪烁次数: 取值范围 0000-FFFF (十六进制);

只有软件触发时有效;

0x0000 为一直闪烁,直到配置到其它模式或改变闪烁次数。

例如:以 ASCII 码发送数据: \$20015A0000*77(末尾请加回车)

以 HEX 发送数据: 24 32 30 30 31 35 41 30 30 30 30 2A 37 37 0D 0A

7.2 设备返回的命令格式

序号	0	1-2	3-4	5-6	7-10	11-12	13	14-15	16-17
ASCII 码	\$	20	XX	XX	XXXX	XX	*	xx	回车
说明	HEADER	CMD	通道	エ	闪烁	配置状态	*	校验值	回车键(对应十六进制 0D0A)
			号	作	次数				
				模					
				式					

(1) 配置状态: XX = 00----无错误

XX = 01----命令不完整

XX = 02----校验和失败

XX = 03----通道号不对

- (2) 其余参考设置说明。
- (3) 例如:以 ASCII 码获取数据: \$20015A000000*77(末尾会收到回车)

以 HEX 码获取数据: 24 32 30 30 31 35 41 30 30 30 30 30 30 2A 37 37 0D 0A

8. 设置 LED 控制时间和触发信号控制时间

序号	0	1-2	3-4	5-8	9-12	13-16	17	18-19	20-21
ASCII 码	\$	21	XX	XXXX	xxxx	xxxx	*	XX	回车
说明	HEADER	CMD	通道号	发光时间	发光延时	同步延时	*	校验和	回车键(对应十六进制 ODOA)

(1)发光时间: XXXX 取值范围的 0000-FFFF (十六进制),单位: 10 微秒; 边沿触发和软触发工作模式时有效。

(2) 发光延时: XXXX 取值范围 0000-FFFF (十六进制),单位: 10 微秒; 边沿触发和软触发工作模式时有效; 软触发模式时,发光延时为灯灭的时间长度。

(3) 触发输出延时: XXXX 取值范围 0000-FFFF (十六进制), 所有触发模式有效; 取值必须小于"发光时间"。

例如:以 ASCII 码发送数据: \$2101006400640064*00(末尾请加回车)

以 HEX 发送数据: 24 32 31 30 31 30 30 36 34 30 30 36 34 30 30 36 34 2A 30 30 0D 0A

8.2 设备返回的命令格式

序号	0	1-2	3-4	5-8	9-12	13-16	17-18	19	20-21	22-23
ASCII 码表示	\$	21	XX	XXXX	XXXX	xxxx	xx	*	xx	回车
说明	HEADER	CMD	通道	发光时	发光延	同步延	配置状	*	校 验	回车键(对应十六进制 0D0A)
			号	间	时	时	态		值	

(1) 通道: XX = 01 ----通道

XX = 02 ----二通道

XX = 03 ----三通道

XX = 04 ----四通道

XX = FF ----所有通道

(2) 配置状态: XX = 00----无错误

XX = 01----命令不完整

XX = 02----校验和失败

XX = 03----通道号不对

例如:例如:以 ASCII 码获取数据: \$21010064006400*00(末尾会收到回车)

以 HEX 码获取数据: 24 32 31 30 31 30 30 36 34 30 30 36 34 30 30 36 34 30 30 2A 30 30 0D 0A

9. 单独设置参数保存命令

9.1 上位机发给设备的命令格式

序号	0	1-2	3-4	5	6-7	8-9
ASCII 码	\$	22	XX	*	xx	回车
说明	HEADER	CMD	通	*	校验值	回车键(对应十六进制 ODOA)
			道			
			号			

(1) 通道: XX = 01 ----通道

XX = 02 ----二通道

XX = 03 ----三通道

XX = 04 ----四通道

XX = FF ----所有通道

(2) 例如:以 ASCII 码发送数据: \$2201*01 (末尾请加回车)

以 HEX 发送数据: 24 32 32 30 31 2A 30 31 0D 0A

9.2 设备返回的命令格式

序号	0	1-2	3-4	5-6	7	8-9	10-11
ASCII 码	\$	22	xx	XX	*	xx	回车
说明	HEADER	CMD	通道号	Err	*	校验值	回车键(对应十六进制 ODOA)

(1) 通道: XX = 01 ----通道

XX = 02 ----二通道

XX = 03 ----三通道

XX = 04 ----四通道

XX = FF ----所有通道

(2) 配置状态: XX = 00----无错误

XX = 01----命令不完整

XX = 02----校验和失败

XX = 03----通道号不对

(3) 例如:以 ASCII 码获取数据: \$220100*01 (末尾会收到回车)

以 HEX 码获取数据: 24 32 32 30 31 30 30 2A 30 31 0D 0A

10. 通道亮度和开关设置

10.1 上位机发给设备的命令格式

序号	0	1-2	3	4-7	8	9-12	13	14-17	18	19-22	23	24-25	26-27
ASCII	\$	23	X	XXXX	х	XXXX	х	XXXX	Х	XXXX	*	XX	回车
码	5												
说明	HEADER	CMD	通道	通道1	通道	通道 2	通道	通道 3	通道	通道4	*	校 验	回车键(对应十
			1 开	亮度	2 开	亮度	3 开	亮度	4 开	亮度		值	六进制 0D0A)
			关		关		关	X	关				

(1) 通道开关: X = A----通道使能

X = 5----通道不输出

(2) 通道亮度: XXXX 取值范围 0000-00FF

(3)例如:以 ASCII 码发送数据: \$23A0064A0064A0064A0064*42(末尾请加回车)

10.2 设备返回的命令格式

序号	0	1-2	3	4-7	8	9-12	13	14-17	18	19-22	23-24	25	26-27	28-29
ASCII	\$	23	Х	XXXX	Х	xxxx	Х	xxxx	Х	XXXX	XX	*	XX	回车
码														
说明	HEADER	CMD	通道	通道1	通道	通道 2	通道	通道3	通道	通道	配置	*	校验	回车键(对应十
			1 开	亮度	2 开	亮度	3 开	亮度	4 开	4 亮	状态		值	六进制 0D0A)
			关		关		关		关	度				

(1) 配置状态: XX = 00----无错误

XX = 01----命令不完整

XX = 02----校验和失败

XX = 03----通道号不对

(2) 例如:以 ASCII 码发送数据: \$23A0064A0064A0064A0064A006400*42(末尾请加回车)

11. 设置滤波脉宽

	序号	0	1-2	3-6	5	6-7	8-9
--	----	---	-----	-----	---	-----	-----

ASCII 码	\$	24	XXXX	*	XX	回车
说明	HEADER	CMD	滤波	*	校验值	回车键(对应十六进制 ODOA)
			脉宽			

(1) 例如:以 ASCII 码发送数据:\$240064*40(末尾请加回车)

\$240032*16 (末尾请加回车)

以 HEX 发送数据: 24 32 34 30 30 36 34 2A 34 30 0D 0A

11.2 设备返回的命令格式

序号	0	1-2	3-4	5	6-7	8-9
ASCII 码	\$	24	XX	*	xx	回车
说明	HEADER	CMD	Err	*	校验值	回车键(对应十六进制 0D0A)

(3) 例如:以 ASCII 码获取数据: \$2400*06(末尾会收到回车)

以 HEX 码获取数据: 24 32 34 30 30 2A 30 36 0D 0A

12. 获取滤波脉宽

11.1 上位机发给设备的命令格式

序号	0	1-2	3	4-5	6-7
ASCII 码	\$	25	*	xx	回车
说明	HEADER	CMD	*	校验值	回车键(对应十六进制 0D0A)

(1) 例如:以 ASCII 码发送数据: \$25*25 (末尾请加回车)

以 HEX 发送数据: 24 32 35 2A 32 35 0D 0A

11.2 设备返回的命令格式

	序号	0	1-2	3-6	7-8	9	10-11	12-13
I	ASCII 码	\$	25	XXXX	XX	*	xx	回车
	说明	HEADER	CMD	滤波	Err	*	校验值	回车键(对应十六进制 0D0A)
				脉宽			-7	

(3) 例如:以 ASCII 码获取数据: \$25006400*05(末尾会收到回车)

以 HEX 码获取数据: 24 32 35 30 30 36 34 30 30 2A 30 35 0D 0A